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Name  School ____________________________________   Date 

Lab 27.1 – Interference and Diffraction of Light Lab  

“No one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question 
of usage, and there is no specific, important physical difference between them. The best we can do, roughly speaking, is to 
say that when there are only a few sources, say two, interfering, then the result is usually called interference, but if there is 
a large number of them, it seems that the word diffraction is more often used.” – Richard Feynman’s Lectures on Physics, 
Vol. 1 

Purpose 
• To observe the behavior of light passing through various configurations of slits.

• To investigate how the width of a slit and the wavelength of the light passing through it determine the diffraction of
light.

• To determine the wavelength of laser light from the diffraction pattern produced when it passes through a single slit.
• To determine the wavelength of laser light from the interference pattern produced when it passes through a pair of

slits.

• To measure the width of a narrow slit from the diffraction pattern produced when laser light passes through it.
• To investigate the role played by single slit diffraction in the variation in intensity of a double slit interference

pattern.

Equipment 
Interference and Diffraction Apparatus   PENCIL  

Figure 1: Interference and Diffraction Apparatus 
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Explore the Apparatus 
Open the Interference and Diffraction Lab on the website. 

The Virtual Interference and Diffraction Apparatus is a very simple device with just a few controls. Monochromatic light 
from a fictitious multi-color laser passes through one or more vertical slits in an opaque slide. The light arrives at a Viewing 
Screen 1.00 m away from the slide where it produces an interference pattern. The laser is its own switch. Click it to turn it on. 

We’ll refer to the table with the Laser, Slits and Viewing Screen as “the apparatus.” Below the apparatus you’ll find controls 
and display screens. In Figure 1, notice the Viewing Screen, Intensity Graph, and Fringe Display. 

Be sure that your Laser is turned on and click the Scan Viewing Screen button. A Photodetector moves across the 
interference pattern on the Viewing Screen measuring the intensity of the light as a function of horizontal position. The 
intensity vs. position data is displayed in two ways. The intensity is indicated by 

• the height of Intensity Graph, which is a plot of the intensity of the light vs. position on the Viewing Screen. 

• the brightness of the bars of light, called fringes, on the small Viewing Screen on the apparatus, and in the enlarged 
replica of this interference pattern in the Fringe Display below the Intensity Graph. 

 The Contrast Color slider beneath the Fringe Display may be used to adjust the background to make the fringes more visible. 

Four parameters can be adjusted with sliders or numeric steppers. 

• The wavelength can be adjusted throughout the typical visible (human) range of 400 nm to 700 nm. 

• The width of the slits can be adjusted from 20 µm to 160 µm. 

• The slit spacing, the distance between the centers of adjacent slits, can be adjusted from 250 µm to 500 µm. 

• The number of slits can be varied from 1 to 5. 

The first three parameters also have several preset unknown values. You’ll be assigned an “unknown number” – the 
number which you’ll use to select your unknowns. So if you are told to use your assigned unknown wavelength and your 
unknown number is 2, you’ll just select “2” with the wavelength stepper. 

Enter your assigned unknown number here:     

Two rulers are provided to measure the 

• slit width and slit spacing. (Zooming in is recommended here.) 

• position of a minimum or maximum point relative to the central maximum on the Intensity Graph. 

Each ruler is calibrated in units appropriate to the size of the object being measured. 

Any changes you make to the apparatus are immediately reflected on the various screens and displays. The only exception is 
the Intensity Graph, which doesn’t change until you scan the Viewing Screen with the photodetector. 

The first objective of this lab is for you to observe what happens when light passes through various configurations of slits. 
This is something that you almost certainly have not done in the classroom because of the nature and small size of the effects 
we’ll be working with. But with this virtual apparatus, you’ll be able to adjust all the variables that appear in the equations to 
see their actual roles in the phenomena of interference and diffraction. 

“Perhaps some gentle persuasion with some sharply pointed questions will encourage you to do some preliminary 
investigation. We will turn on the laser now. And by we I mean you.” – movie villain of your choice. 

1. Drag the wavelength slider all the way to the left. We’ll call this color violet. What’s its wavelength?    nm 

2.  Drag the wavelength slider all the way to the right. We’ll call this color red. What’s its wavelength?    nm 
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For humans there’s a range of wavelengths that could be called red, a range 
called orange, etc. We, like Newton, find that as we move through the colors 
from red to violet we come upon about six or seven with widely agreed upon 
names and hues. His representation of the colors as a continuum doesn’t 
correspond to any real behavior. And indigo might be a stretch for most of us. 

3. It’s useful in our work to know about the order of these colors in the 
spectrum and how they relate to wavelengths. So, let’s get to know them. 
Select a wavelength in the range of each color in the sequence 
ROYGBIV. There are no exact answers. Just aim for a color in the 
middle of the range. 

 a.  Red    

 b.  Orange    

 c.  Yellow    (Very narrow) 

 d.  Green    

 e.  Blue    

 f.  Indigo  No Way  

 g.  Violet    (Very narrow) 

 
Figure 2a: From Newton’s Optiks 

 
Figure 2b: From Pink Floyd’s Optiks 

 With this apparatus, light from the laser passes through one or more slits and then hits a screen one meter away. In 
addition to the color of the light, you can adjust the width of the slits, the number of slits, and the spacing between the 
slits. Try each of these and notice how the enlarged view of the slits on the Fringe Display reflects your changes. 

4. Set the laser color to a red, the number of slits to one, and the slit width to 40 µm. Scan. (This means to click the Scan 
Viewing Screen button.) You should see a nice red “fringe” that takes up about half the width of the Fringe Display. Two 
other very dim fringes appear just at the edge of the Fringe Display. Adjust the background contrast as needed. Zoom in 
three times on the Viewing Screen on the apparatus. The Fringe Display just shows the central part of this full, but tiny, 
display. Zoom back out to 100%. 

5. Slowly adjust the wavelength from red to violet. Scan. 

 As the wavelength decreases, the width of the central, bright fringe    (increases or decreases) 

6. Reset the color to red. Scan. The slit width should be set to 40 µm. Slowly increase the slit width to its maximum value. 
Scan. What three significant changes do you observe as you increase the slit width? One involves the Intensity Graph. 

  

  

  

7. Reset the slit width to 40 µm. Scan. 

 Change the number of slits to two. Scan. Describe the changes in the Fringe Display and the Intensity Graph. Also 
comment on what stays the same. 

  

  

  

  

8. Feel free to change the number of slits up to 5 and Scan if you like spiky things. 
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Theory 

A. Diffraction and Interference 
While you’re waiting for your opponent to arrive at the tennis court, you can warm up by hitting the ball against a wall. You 
can count on the ball to behave in a predictable manner. If you have good aim, the ball is always going to bounce back. If you 
hit it past either side you know right where to go to pick it up. So unless you hit the ball over the wall, the area behind the 
wall is a tennis ball shadow. 

If you do hit the ball over the wall and some kind person on the other side throws it back over the wall to you, you don’t have 
to climb the wall or walk to the edge of the wall to shout your thanks. Not only can you just shout toward the wall, you can 
shout in almost any direction and still be heard. Clearly sound doesn’t behave like a tennis ball. There is no sound shadow 
behind the wall. 

There are actually two phenomena involved in this “hearing around corners” phenomenon. When the sound arrives at an edge 
of the wall, it bends around the wall. This “bending” of waves when they reach an opening or an edge is called diffraction. 
So how does the sound get behind the wall when you don’t even shout in the direction of the wall? It diffracts when it exits 
your mouth. Differently shaped speakers for different situations and cheerleading megaphones suggest that there are ways of 
modifying the amount and direction of diffraction. 

There’s another factor involved in talking to someone behind the wall. If you or your listener were to move around a bit 
you’d find that the sound heard would be clearer and louder at some points and more garbled at others. This is because all 
this sound wrapping around and over the wall is recombining at your listener’s ears to reproduce the pattern of compression 
and decompression of the air that you originally produced. 

Sound coming by different paths will be out of sync to different degrees, so what’s heard is a mash up 
of different parts of “Thank you very much for returning the ball.” Something like: 

“Thank you very much for returning the ball.” → 
     “Thank you very much for returning the ball.” → 
   “Thank you very much for returning the ball.” →  

“HUH? All I got was a bunch 
of noise ending with bbball” 

The merging together of these sound waves to produce one sequence of compressions and rarefactions that you’re trying to 
interpret is called wave interference. Once the sounds split into several paths, the geometry has to be just right to get them 
back in sync. It’s no wonder that marching bands are impossible to hear clearly. The sound is diffracting in all directions 
when it leaves their instruments, and then it reflects off of a sloping wall of people and concrete to get to your ears! 

In summary, multiple waves arriving at a given point combine to produce a resultant wave, which is the sum of the 
amplitudes of the various waves. This is the process of interference. 

That seems pretty tidy. We have diffraction and interference. But, well, diffraction involves interference. As Dr. Feynman 
pointed out in the opening quote, there is not a clear distinction between interference and diffraction. Physicists have gotten 
accustomed to being very loose with these terms, and it seems to be beyond fixing. 

We’ll first look at cases of pure interference of waves and then explore interference resulting from diffraction. (See, there’s a 
good example of the loose use of these terms. It’s a typical and acceptable example of their use, but confusing if you’re trying 
to understand the difference in their definitions. See Dr. Feynman’s opinion on that.) We’ll also find that several factors can 
be important. An equally loud bee buzzing in front of the wall will not be as easy to hear behind the wall. Wavelength 
matters. You’ve already done the research to understand that one in the introduction. The high frequency (shorter 
wavelength) blue diffracts – bends around corners – less than the low frequency (longer wavelength) red light. Similarly, the 
high frequency bee would be harder to hear behind the wall. 
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B. Interference 

Let’s look at the interference of a pair of waves on the surface of a tank of water. 
Figure 3 is a snapshot of a red marble jiggling up and down when partially 
submerged in a tank of water. A continuous circular surface wave is produced. The 
small bit of Styrofoam jiggles up and down with a slight delay due to the travel time 
of the wave. 
 

 
Figure 3: Water Waves 

In Figure 4a, the small red (top) and blue (bottom) dots at the left represent a pair of marbles jiggling similarly. (Overhead 
view.) They are moving in phase. That is, they are at all times at the same height and moving in the same direction. Each time 
they strike the water a new trough is produced. Half a period, T, later the water will overshoot its equilibrium level and 
produce a crest. The circles represent wave crests. Troughs would be found half-way between adjacent crests. In Figure 4b, !

"
 

later, each wave has traveled a distance equal to half a wavelength. So each crest has reached a point previously occupied by 
a trough. 

Each of the four circular viewports in each figure shows an edge-on snapshot of the water wave at the point it connects to. 
The top and bottom viewports, (i), and (iv), show regions where only one of the two waves has arrived. As the actual water 
waves move over time, the waves in these viewports would move left to right across the cross-hairs. Notice how from Figure 
4a to Figure 4b, each of these snapshots shows the wave moving a distance equal to half a wavelength. A crest is shown at 
the center of the cross-hairs in Figure 4a and the following trough is centered in Figure 4b. 

The middle pairs of viewports, (ii), and (iii), show the waves at two points where they have already overlapped. In this 
region, at a given instant, the wave height at any point is the sum of the heights of the individual waves passing 
through that point, at that instant. The individual waves have lost their individual identities. Viewport (ii) in Figure 4a 
shows that at the point it refers to the water is a double-depth trough. In Figure 4b, it indicates a double-height crest. These 
waves will always be in phase at this point, which means they will always be at the same point in their cycle of up and down 
motion. At this instant, their resultant wave has twice their individual amplitudes. This addition of amplitudes where both 
waves are displaced in the same up or down direction is called constructive interference. This effect is at its maximum at this 
instant since both waves are at maximum points in their cycle. The waves were created in sync and each has traveled 4.5 
wavelengths to arrive at the fixed point where the snapshot is being taken. 

   
(4a) In Phase – Trough (4b) In Phase – Crest (4c) Nodal and Antinodal Lines 

Figure 4: Interference of Two Overlapping Circular Waves 

In viewport (iii), we see the opposite effect. Again the waves start out in phase, but in Figure 4a, the red (top source) wave 
has traveled 5 wavelengths but the blue (bottom source) wave has traveled only 3.5 wavelengths. And in Figure 4b, each has 
traveled another half wavelength but, at the fixed point we’re observing, they are still exactly out of phase. Thus the waves 
are exactly out of phase and will remain that way over time. This out-of-phase addition is called destructive interference. 
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Further inspection shows that all points along the dashed centerline will experience double-height crests and troughs. In 
Figure 4c, the top and bottom dashed lines have been drawn passing through intersections of waves where they are in phase.  
All points along these lines will also experience alternating double-height crests and double depth troughs. 

The other pair of dashed lines connect points where troughs of one wave intersect with crests of the other wave. Again, the 
waves “cancel” leaving approximately still water. These lines of constructive and destructive interference alternate. You’ll 
see later that the spacing, and hence the number of lines that appear, depends on the spacing of the wave sources and the 
wavelength. 

Figure 5 shows an actual photograph of this wave pattern. If you were to sit in an inner tube anywhere along one of five thin 
antinodal lines you’d be subjected to large up and down motions as large crests and troughs arrive in succession. 

Sitting in your inner tube anywhere along the one of the four 
thick nodal lines is a fairly calm experience. The waves 
approximately cancel out to the level of still water. Hopefully 
you can clearly see how this behavior parallels the behavior of 
the light hitting our Viewing Screen. The bright points are 
equivalent to the ends of the antinodal lines in Figure 5. 

What we’ve seen so far with water waves is also found with 
other types of waves such as sound and light waves. We’ll 
consider the particular case of light from here on. Constructive 
interference will produce bright fringes on a screen while 
destructive interference will produce dark fringes. 

 
Figure 5: Nodal and Antinodal Lines in Water; Bright 
and Dark Fringes On a Screen 

You’ve already observed this pattern of bright and dark fringes in your initial exploration with the apparatus. The same 
geometry that produces these effects provides a framework for a mathematical description of this behavior. 

Equations for the location of nodal (dark) and antinodal (bright) fringes 
We’ve found that points of constructive or destructive interference are due to the difference in distance, the path difference, 
Δr, between the sources and positions on a screen. (This assumes that the sources are in phase which they’ll always be with 
this apparatus.) Specifically, if light travels λ, 2λ, 3λ, etc. farther from one source than from another, then constructive 
interference will occur. Similarly, destructive interference will occur if the path difference is 0.5λ, 1.5λ, 2.5λ, etc. 

In Figure 6, light sources S1 and S2 produce identical waves in 
phase. Since r1, and r2 are equal distances, all waves will arrive 
at point P in phase. Crests will arrive together, as will troughs. 
So point P will be a bright fringe. Due to the symmetry of the 
arrangement, we would call it the central bright fringe. This 
corresponds to point (ii) in Figures 4a-c.  

Figure 6: Central Bright Fringe 
If we examined other points along the screen, we’d find a first pair of bright points equal distances above and below the 
original point P. Figure 7 shows the two new paths taken to reach one such point, P. Both paths are longer than before, but 
they are no longer equal. The path from S2 to P must be exactly λ further than the path from S1 to P. 

Between the central bright fringe at O and the next bright fringe at P will be a dark fringe at a point where r2 – r1 = #
"
. 
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Figure 7: First Order Bright Fringe 

 

Figure 8: First Order Bright Fringe, where L ≫ d 
 

Imagine a screen much farther to the right. For θ to remain the same, y would have to be proportionally larger. And at a great 
enough distance, L, the lines labeled r1 and r2 would be approximately parallel as shown in Figure 8. (This figure is enlarged.) 
There is no change in the value of d.) In this case, where L ≫ d, the mathematics is much simpler than what we see in Figure 
7. We’ll just deal with this case, which was developed by Joseph Fraunhofer. (See the “Cosmos: A Spacetime Odyssey” 
"Hiding in the Light" episode to see how we almost lost young Joseph. He was fortunate to have a house fall on top of him.) 

For this case, the angle θ between r1 or r2 and L will be the same as the angle θ in the right triangle shown in Figure 8. 

For the first bright fringe, we found that the path difference, Δr = λ. For the next bright fringe, at a larger angle, θ, Δr = 2λ, 
and so on. Similarly, for dark fringes we’d have Δr = 1 2'  λ, 3 2'  λ, and so on. 

For two sources, created in phase, at a distance L from a screen: 

 Δr = m λ  where m = 0, ±1, ±2, … for bright fringes (double slit) (1) 

 Δr = (m + )
"
) λ  where m = 0, ±1, ±2, … for dark fringes (double slit) (2) 

We use ±m values to distinguish fringes on either side of the central maximum. 

Using right triangle ΔS1 S2 B, in Figure 8, and noting that d is the distance between S1 and S2, we can say 

 sin θ = 
*+
,

  (3) 

Substituting each expression for Δr into Equation 3, we can solve to find 

 mλ = d sin θ  where m = 0, ±1, ±2, … for bright fringes (double slit) (4) 

 (m + )
"
) λ = d sin θ  where m = 0, ±1, ±2, … for dark fringes (double slit) (5) 

One practical problem with Equations 4 and 5 is that it’s difficult to precisely measure these very small angles. The geometry 
of Figure 7 suggests an alternative. Again assuming that L ≫ d, we can use the large triangle ΔAOP to produce the equation 

 y = L tan θ   (6) 

In addition, we know that for small angles tan θ ≈ sin θ. So we can solve Equation 6 for tan θ and substitute the result for the 
sin θ term in Equation 4 to get 

 ym = 
-	/	#
,

 where m = 0, ±1, ±2, … for bright fringes (double slit) (7) 

Procedure 

I. Double Slit Interference – Measuring an Unknown Wavelength 
So how might we arrange for two sources of light to come together in phase, or out of phase, on a screen? You’ve probably 
read about a modified version of Thomas Young’s famous experiment in 1801 that involved light passing through a single 
slit, then through a pair of closely spaced slits, and then being viewed on a screen in a darkened room. Using light from this 
single source to illuminate both slits insured that the light coming from the two slits was in phase. 
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A more convenient method unavailable to Thomas 
Young by about 150 years is to use laser light. Due to 
its method of production, laser light is always in phase. 
In Figure 9, laser light diffracts separately through each 
slit, providing us two in-phase sources of light to 
illuminate our screen. 

We’ll now set up our virtual apparatus in this two-slit 
mode, and use Equations 1-7 to determine the 
wavelength of our monochromatic laser light.  

Figure 9: Monochromatic Laser Light Through Two Slits 
 

Trial 1 – Measuring Wavelength using Double Slit Interference 

Did you ever wonder how we’re able to measure the wavelength of light? Or how we know that light is a wave to begin with? 
Experiments like Young’s were the answer to both questions. The interference patterns on Young’s screen indicated that light 
might be a wave; and the experiment we’re about to do provided the wavelength. We’ll first use Equation 7 to calculate the 
wavelength of a shade of light in the green-yellow region and then repeat the process with an unknown wavelength. In each 
step below, you’ll want to record your settings, measurements, and calculated values in Table 1. 

Be careful with units. The table conveniently uses four different units of length to correspond to the apparatus display units 
and ruler units. You’ll inconveniently need to convert each of these units to meters when you do calculations. It could be 
worse. You could have a house fall on you. 

1. Set the number of slits to two, and the slit spacing, d, to 250 µm. (µ, micro = 10-6, n, nano = 10-9) 

2. Set the slit width, w, to 40 µm. 

3. Turn on the laser. Adjust the wavelength slider to 540 nm. Notice how the apparatus – laser, slit, and screen – matches 
our assumptions about d, L, θ, etc. Rays traveling from the two slits to a given point on the screen are very nearly 
parallel. In the following images, a red-orange wavelength will be used as an example. Your green-yellow wave y-values 
will be smaller than those shown. (The green doesn’t print out very well on paper.) 

4. Scan to record and display the intensity data. You’ll see a set of yellow-green fringes of 
varying brightness. The bright fringes are maxima, and the minima are in between. The 
specific location of a maximum is at its brightest point. As you can see, this is hard to 
determine from the thick fringes. 

 The Intensity Graph takes care of that problem. The scanning photodetector measures the 
intensity of the light reaching the Viewing Screen at each horizontal position on the screen. 
This intensity data is plotted so that the height of the curve corresponds to the brightness of 
the light measured by the photodetector at a given point. This curve more precisely shows 
the variation in brightness of the light. 

 

Figure 10a: Maxima 
and Minima 

 
 We’ll use the distance from the center line out to a peak as a measure of the position 

of the maximum. (Use the checkbox to turn on the mm ruler.) In Figure 10b, that would be 
about 2.5 mm for the first maximum and about 5.1 for the second maximum. Be sure to 
note that the smallest increments on the ruler are 0.2 mm apart. The position of a maximum 
is represented by ym, where m is the order of the maximum. The maximum at 2.5 mm in 
Figure 10b is y1 since it’s the first one to one side of the central maximum. There’s another 
first order maximum equidistant at -y1 on the left. 

 

Figure 10b: Position, 
ym, of a Maximum 
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 To improve our accuracy we’ll take advantage of the equal spacing of the maxima. 
Figure 10c shows the m = 1 and 2 peaks on either side of the central maximum. The ruler 
shown is aligned to measure the distance between –y2 and +y2. By zooming in a couple of 
times, you should be able to measure this distance to 0.1 mm. Since this is the span of four 
maxima, half of that distance would be y2. If that total distance is 10.2 mm, then y2 would 
be 5.1 mm. 

 
Figure 10c: –y2 to +y2 

 
 Table 1 – Double Slit Diffraction 

                                                                                        L = 1 m 
Data Calculated % error 

Trial Unknown 
# 

m d 
(µm) 

w 
(µm) 

λtheo 

(nm) 
-y3 to +y3 

(mm) 
y3 

(mm) 
θ3 

(°) 
λexp 

(nm) 
%-error 

(λ) 
1  3 250 40 540      

2  3 250 40       

3  3 500 40       
 

NOTE: 

Any time you make a change in the parameters – wavelength, slit width, etc. – you’ll need to Scan to reset the Intensity 
Graph. 

5. Measure the distance between -y3 on the left and +y3 on the right. 

6. Calculate y3 by dividing the -y3 to +y3 distance by 2.  

7. Calculate θ3, the angle for the third maximum, using Equation 6. For your results to be valid, θ must be less than a few 
degrees. You should get a very tiny angle. (Be careful to use meters for all distances in your calculations!) 

8. Use Equation 7 to determine the experimental value of the wavelength of your laser light. 

9. Compare your experimental value to the theoretical value by calculating the percentage error. 

10. Show your calculations of θ3, λ, and your percentage error here. 

  
 
 
 
 
 
 
 
 
 

Trial 2 – Determining your Unknown Wavelength using Double Slit Interference 

Repeat the data collection and calculations above to determine your assigned unknown wavelength. 

11. Adjust the laser to your assigned wavelength by setting the numeric stepper to your unknown number. 

12. Collect all the data and calculate all the values you need to fill in the trial 2 row of Table 1.  
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13. Show your calculations of θ3 and your wavelength. 

  
 
 
 
 
 
 

Trial 3 – The Effect of Slit Spacing, d, on the Position of the Fringes 

Let’s have another look at the geometry that 
produced our interference patterns. In Figure 11, the 
small triangle has two vertices located at the centers 
of the slits. For the first maximum to be located at 
the point shown, the third vertex must be located one 
wavelength along ray r2 from the center of the 
bottom slit. Note that the angle is 90° at this vertex. 
Draw a tiny wavelength (~) in the figure to show the 
path difference of 1λ. 

 
Figure 11: The Geometry of Interference Patterns 

14. In Figure 12, the first maximum you just 
produced is shown as y-original, yo. But the slits 
have been adjusted to be twice as far apart. The 
first maximum will now be at a new point which 
you need to find using the diagram. What effect 
would doubling the slit spacing have on the 
location of this first maximum? Add the missing 
lines from Figure 11 to this figure taking into 
account the new positions of the centers of the 
slits. It takes a bit of trial and error. Fortunately 
you’re using a pencil. 

    
Figure 12: The Effect of Slit Spacing on the Location of Maxima 

 

15. You should now be able to make an estimate of what would happen to your trial 2 data if you doubled the slit spacing. 

a. What was your value that you recorded for the distance “-y3 to +y3” from trial 2?    mm 

b. What do you predict will be the approximate value for “-y3 to +y3” if you double the slit spacing?         mm      

16. Now test your prediction with your assigned wavelength. Double the slit spacing from 250 to 500 µm. Scan. Measure y3 
with the new spacing. Enter your data as trial 3 in Table 1. 

Let’s summarize some of the basic ideas that you’ve learned so far. Use the space below to respond to a-c. For light 
passing through a pair of narrow slits, how is the spacing of the fringes affected by 

 a. the spacing of the slits? 

 b. the wavelength of the light? 

 c. the distance from the slits to the screen (you weren’t able to test this with the apparatus, but geometry helps)? 
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II. Single Slit Diffraction 
When we looked at the interference of a pair of circular water waves in Part B of the 
theory, we found alternating maxima and minima just as we’ve found with a pair of slits. 
But there’s something else going on that we haven’t addressed. The fringe brightness 
drops off with increasing y-values. But then it increases at larger y-values! There’s 
nothing about our water wave model that would suggest this behavior. Back to the lab! 

 

 

Figure 13: Brightness vs. y 

1. Reset your apparatus to the arrangement we used in trial 1 in part II. That is, two slits, λ = 540 nm, slit width, w = 40 µm, 
slit spacing, d = 250 µm. Scan. 

2. In Figure 14 draw a simple sketch of what you observe on the Intensity Graph and Fringe Display. 

 

 

Figure 14: Double Slit Intensity and Fringe Pattern  
 

3. If you prefer you can take a Screenshot of the bottom portion of the lab screen – the part below the apparatus. Then save 
it as “interference_doubleslits.png”, print it out, and paste it in the space next to Figure 14. 

4. Decrease the number of slits to one. Scan. What a difference a slit makes! You commented on this in your initial 
exploration. There are some obvious as well as some subtle things that occur when you switch from two slits to one. The 
multiple individual fringes are replaced by a wide central fringe and two very dim fringes on either end. Also the varying 
brightness (intensity) of the original double slit fringes is reflected in the varying brightness of the three single slit 
fringes at corresponding positions. If you didn’t notice that, switch back and forth between one and two slits. Be sure to 
Scan after each switch. Also the shape of the intensity curve of the single slit fringe pattern is identical to the shape of 
what we call the envelope of the double slit intensity curve.  

 To be clear about what we’re observing, the intensity of the double slit curve is very spiky. But if you draw a smooth 
curve connecting the maxima of all the spikes, you get what’s called the envelope of the intensity graph. That envelope 
looks just like the intensity graph of a single slit. (We’ll address the intensity scale differences later.) 

 Why is this happening? Perhaps the variation in brightness with position on the Fringe Display is some sort of individual 
slit behavior and the number of fringes is a multi-slit behavior. To understand why this occurs we need to observe the 
behavior of light passing through just one slit. 

5. In Figure 15 draw a simple sketch of what you observe on the Intensity Graph and Fringe Display for the one-slit case. 

6. If you prefer you can take a Screenshot of the bottom portion of the lab screen – the part below the apparatus. Then save 
it as “interference_ singleslit.png”, print it out, and paste it in the space next to Figure 15. 
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Figure 15: Single Slit Intensity and Fringe Pattern  
 

Slit Diffraction/Interference 
In Figure 4, we saw the interference pattern produced by of a pair of point sources, which produced circular waves in all 
directions. We then created a similar effect with light by using a pair of slits. But we also found an unexpected feature – the 
variation in brightness – something that our water wave model would not have predicted. The difference is due to the finite 
(as opposed to extremely narrow) size of our slits. Our slits are not really point sources. 

To understand why this is important we first need to consider how waves actually travel through our slits. Christian Huygens 
developed a principle that explains how a wave front propagates, that is, how a wave front at one instant can produce a new 
wave front at a new position a short time later. He suggested that each point along a wave front acts as the source of tiny 
circular wavelets that move forward at the wave’s speed. The wave front a moment later is the tangent to all these individual 
wavelets.  

In Figure 16a, we see a section of a long, straight wave traveling toward a 
narrow slit. The second wave from the left is shown producing three 
Huygens wavelets which result in a new straight wave. A wave produced 
three periods earlier is nearing the slit. 

In Figure 16b, just a tiny part of the wave has passed through the slit, 
leaving just the circular wave from that point-like section of the original 
wave to continue on. This is the behavior of waves passing through a very 
narrow slit – the waves act almost as if they’re all coming from the same 
point, much like our water waves! As mentioned before, this bending into 
what would be expected to be shadow is called diffraction. Figures 16a and 
16b demonstrate a case of strongly diffracted waves. 

 
                   (a)                  (b) 

Figure 16: Diffraction by a Narrow Slit 

 
In Figure 17 a wave passes through a slit with a width of several wavelengths. 
The center part of the wave exits the slit without much change. But the parts of 
the wave near the edges of the slit diffract somewhat into the expected shadow 
region. But the intensity of the diffracted waves is much weaker in this case. 

With our light waves we have something more extreme than what’s illustrated 
in Figure 17. The slit width in Figure 17 would need to be maybe twenty times 
as wide to illustrate the relative values of the light wavelengths and slit widths 
we’ve been working with. In other words, our slits are many wavelengths wide. 
And this results in much less diffraction. 

 
Figure 17 Diffraction by a Wider Slit 

7. Let’s watch this happen with our apparatus still with one slit. All of our work is being done with slit widths of at least 
40 µm. Use that width and λ = 540 nm. Look at the Viewing Screen on the apparatus. You should see a very tiny bright 
fringe at the center of the screen. Zoom in several times. You should see the central bright fringe, then the faint m = ±1 
fringes and then some still fainter m = ±2 fringes. The light passing through a 40 µm wide slit has expanded so that the 
central maximum is about 27 mm wide. The angle of this wedge of light is only about 1.6°. Now zoom back out. 
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8. Gradually slide the slit width slider all the way to the left, to 20 µm, while watching the Fringe Display. Scan.  

 The central bright fringe fills the whole Intensity Graph. This is approaching, but still far away from what Figures 16a 
and 16b are illustrating – point source behavior. It’s also closer to what the individual water waves did in Figures 4a and 
4b. Their amplitude seemed to be unrelated to θ. You should be able to picture the result of further reduction in slit 
width. 

9. There’s another factor that influences the amount of diffraction. Return the slit width to 40 µm. Drag the wavelength 
slider back and forth and notice the change in width of the diffraction pattern. Obviously the wavelength plays a key role 
in diffraction, too. 

10. When light passes through a narrow slit, the amount of diffraction    with wavelength 
 and    with the width of the slit. So diffraction is proportional to λ/w.          (increases or decreases) 
 
What’s physically happening to cause the λ/w effect and the related fall and rise in brightness with a single slit? We’ve 
already noticed that the brightness decreases and then increases with screen position, y. So this is not just the behavior of a 
single source fanning out uniformly. Look back at your drawing in Figure 14. We found very large increases and decreases in 
intensity with double slits. But without a second slit, how can we produce interference? The individual wavelets have to do it 
somehow with no outside help. 

In Figure 18a, a segment of a long wave front, on the left, approaches a slit. Because it’s part 
of a long wave front, it maintains its shape. Two periods later it’s within the slit and only part 
of it can pass through. Note that the slit is hugely magnified so that we can see the 
wavelets. We’ll use five wavelets to examine what will happen next. Specifically, we’ll 
predict how much light arrives at various points on the screen. 

Each wavelet will produce light in all forward directions perpendicular to the wavelet as 
indicated by the arrows in Figure 18a. But the distance traveled by each wavelet to a given 
point on a screen will be determined by the geometry. The differing distances traveled will 
determine whether or not the light arrives in phase producing a bring spot, totally out of 
phase, producing a dark spot, or somewhere in between. 

 
Figure 18a: Light 
produced by Wavelets 

 

Consider the light arriving at the center of the screen as shown in Figure 18b. Because of 
symmetry, light from the top wavelet (#1) will arrive at the center of the screen in phase with 
light from the bottom wavelet (#5), thus producing constructive interference. A similar 
pairing exists for #2 and #4, and every other wavelet pair. Thus we expect a very bright 
central point. 

How about a point just above the center of the screen? Our wavelet pairs will be somewhat 
out of phase due to the difference in distance traveled. And they’ll be gradually more out of 
phase at increasing distance from the central point. Thus the brightness drops off with 
increasing distance from the center, y. 

 
Figure 18b: Central 
Bright Fringe 

 

With single slit diffraction, we generally focus on the dark fringes rather than 
the bright ones. In Figure 19, a dark fringe is illustrated. Remember, the slit is 
actually very tiny relative to what’s shown in the figure, and the screen is far 
away, so the rays are essentially parallel as shown. You can see this very dim 
fringe with your apparatus. There’s one equidistant on either side of the central 
maximum. At these points there is almost no light. Figure 20 shows the 
geometry that produces this first dark fringe. 

At some particular angle, θ, wavelet 5 travels exactly ½ λ farther to get to the 
screen than wavelet 3. As a result they are exactly out of phase, and they 
interfere destructively. Similarly wavelet 4 and wavelet 2 interfere destructively 
at this angle. And wavelet 3 interferes destructively with wavelet 1. 

 
Figure 19: First Dark Fringe 



KET Virtual Physics Labs   KET © 2019  

VPL_Lab - Interference and Diffraction of Light 15 Rev 12/19/18 

 

So for every wavelet exiting the slit, there is another wavelet that will 
interfere destructively at this point. The result is the dark fringe on the 
screen. 

In between the angles 0° and this angle θ, there is neither fully constructive 
interference nor fully destructive interference. This produces the gradual 
drop off in brightness to approximately zero. Then, as θ continues to 
increase, constructive and destructive interference alternate. 

In short, it’s possible to have interference with just one slit because light 
from one part of the slit can interfere with light from another part! 

 
Figure 20: Production of First Dark 
Fringe 

Since the angle θ is associated with the location of a dark fringe, it’s a good measure of the amount of bending of the light, 
the diffraction. You found in your exploration that the amount of diffraction is proportional to λ/w. Use Figure 20 to see why 
this is true. You’ll want to think of point 1 as a pivot point and consider what happens to θ as a changes are made to λ, or w. 

11. For the first dark fringe on a screen, and slit width w, as the wavelength, λ, increases, the angle θ    . 

12. For the first dark fringe on a screen, and wavelength, λ, as the slit width, w, increases, the angle θ    . 

So now we know why diffraction is proportional to λ/w. 

The geometry that produces the dark fringes is fairly straightforward. From the largest triangle shown in Figure 20, we can 
see that for the production of a dark fringe, the path difference between the top and bottom points in the slit must be one 
wavelength. For the angle θ in the triangle formed between points 1 and 5, the side opposite θ is λ and the hypotenuse is w. 
Thus sin θ = #

0
 and   

 𝑤 sin𝜃 = 𝜆 for the first dark fringe produced by a single slit (8) 

Equation 8 was produced by dividing the slit into two sections so that each wavelet in the top half had a matching wavelet in 
the bottom half that would destructively interfere with it. If we divide the slit into four sections, the top two will destructively 
interfere and the bottom two will destructively interfere. This will work with any even number of divisions. 

For example, for the second dark fringe, if there is one, the wave from point 5 must travel λ farther than the wave from point 
3 and the wave from point 3 must travel λ farther than the wave from point 1. The result is that the wave from point 5 will 
travel 0.5 λ farther than the wave from point 4 and the wave from point 3 will travel 0.5 λ farther than the wave from point 1. 
Each point in between will also have a matching point to destructively interfere with.  

Thus, Equation 8 becomes w sin θ = 2λ. So sin θ will be twice what it was for the first dark fringe. In general, for all dark 
fringes produced by a single slit, 

 𝒎𝝀 = 𝒘	𝐬𝐢𝐧	𝜽         where m = 1, 2, 3,… (single slit) (9) 

Again, for small angles we can also use the small angle approximation, sin θ = tan θ = yn/L to produce 

 ym = 
𝒎	𝑳	𝝀
𝒘

 where m = 1, 2, 3, … for dark fringes (single slit) (10) 

  



KET Virtual Physics Labs KET © 2019 

VPL_Lab - Interference and Diffraction of Light 16 Rev 12/19/18 

Example. Set the wavelength to 550 nm and the slit width to 100 µm. Scan. We’ll solve for the slit width, w, for our 
example. You should see one central peak and three full shorter peaks on either side. But we’re interested in the dark fringes,
not the bright ones. (You can see how they’re easier to measure.) We have four dark fringes on each side. So m = 4 and the 
distance between these dark fringes, referred to in the table as y-4 to y+4, is about 44.9 mm. So y4 = (0.0449 m)/2.  Solving 
Equation 10 for w and entering our data gives a value for w of about 

w = 
-	/	#
@𝑚

= B	×)-×	DDEF-
(.EBBI	-)	/"

 = 98.0 µm 

which is about the 100 µm we expected. 

This would be a handy technique for anyone needing to measure the width of small openings. We live in a nano-world. 

Trial 1 – Measuring Wavelength using Single Slit Diffraction 

13. You’ve found your assigned unknown wavelength previously using the double slit equations. Let’s find that value again
with our single slit equation. Use a slit width of 40 µm. Take whatever data you need and enter it and your results as
trial 1 in Table 2.

14. Calculate the percent difference between the values you determined for your unknown wavelength with the single slit
and the double slit calculations.

15. Show your calculations for the experimental value of your wavelength below.

Table 2 – Single Slit Diffraction 
 L = 1 m 

Trial Unknown 
# 

m λ 
(nm) 

w 
(µm) 

wexp 
(µm) 

y-m to y+m 

(mm)
ym 

(mm) 
λexp 

(nm) 
%-difference 

(λ) 
1 40 

2 

Trial 2 – Measuring the Width of a Small Slit using Single Slit Diffraction 

One important use of the single slit diffraction is to find the size of a tiny opening. We’re accustomed to using macroscopic 
tools such as meter sticks to measure the sizes of objects or spaces between objects. But for very small objects or apertures, 
these clumsy tools are not so useful. Building a micrometer scale measuring stick is difficult enough, but reading it is also 
made difficult by the same behavior of light at small scales that we’re investigating. Light’s wave nature really stands out 
when it interacts with very small objects and openings. 

Similarly diffraction of light around solid objects can be used to measure the widths of objects such as hairs or spider web 
silk. You’ll now use Equation 10 to measure the width of one of the six slits of unknown width. 

16. Use the numeric steppers beside the wavelength and the slit width sliders to select your unknown number for each of
these. Leave the slit spacing at 250 µm and set the number of slits to one.

17. Enter your just-determined experimental value of your unknown wavelength under the λ (nm) column.

18. Take your y-data to determine your slit width.
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19. Show your calculations of the unknown slit width in trial 2. You’ll need to show your calculation of ym and w.

If you run into trouble, try some known values to test your math.




